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A set of such closely spaced 
energy levels is called an 
energy band.

When two atoms come 
together to form a molecule, 
each of the atomic levels will 
split into two closely spaced 
levels. 

 Each atom, when isolated, has a discrete set of electron energy 
levels, 1s, 2s, 2p,......

Energy band:

When N atoms come together to form a solid, each of the 
atomic levels will split into N very closely spaced sublevels.



 The amount of splitting depends strongly on:
 interatomic distance: the closer the atoms, the greater the 
splitting.
 atomic orbital: the higher the energy, the greater the splitting.

 The wave function describing the 
electronic states in a band, known as 
the crystal orbital, can extend
throughout the solid, unlike the 
atomic orbital which is localized.

 The wavelike properties of an 
electron in a crystalline solid can be 
described using the following form 
of Schrodinger equation:
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Where V(r) is the crystal potential seen by the electron and  (r) & E
are the wave function and energy of this electron.   

(1)
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The solution of (1) for a periodic potential is given by

(2)

Where both the function u(r) and the probability density    (r)2

must have the same translational symmetry as the lattice , i.e,

The only function that satisfies this is eikr, hence (2) can be written as

The Bloch Function

Which known as Bloch function. 

(3)



 This state function has the form of a traveling plane wave so 
it propagates through the crystal like a free particle.

 This function represents the crystal orbital of the solid.

Notes:

eikr

u(r)

http://www.flickr.com/photos/36402008@N06/3358512274/
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Substituting from (3) into (1) gives

 This is an eigenvalue equation which leads to many solutions. 
Therefore, for each value of k there are a large number of solutions 
(i.e. a set of discrete energies E1,k , E2,k, ….).

The Energy Spectrum

 The energy spectrum in a solid is composed of a set energy 
bands. Regions separating these bands are energy gaps, i.e. 
regions of forbidden energy.

 Each band covers a certain range of energy, extending from the 
lowest to the highest value it takes when plotted in k-space.

Within each band the electron states can be classified according 
to their momentum (p=ħk).



V(r) is the crystal potential “seen” by the electron. The most 
important property of this potential is its periodicity. 
This potential is composed of two parts; ionic & electronic:
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The crystal potential

Since electron-electron interaction is very 
weak and has some difficulties to be 
calculated, the second term in (4) can be 
dropped out. The major effect of this 
interaction is to screen the ions from 
other electrons and hence to weaken the 
elecrton-ion interaction.
Thus,
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Where vs(r-Rj) is the potential of the screened ion located at Rj.

(4)
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Since each Bloch function (r)n,k defines a specific electron state, 
let see how many states there are in each band.

For 1D case:

For the first zone, the number of states 
is

Where N is the number of unit cells. Hence, we end with these two 
important facts:

1- In each band the number of states (crystal orbital) inside the 
first zone is equal to the number of unit cells in the crystal N.
2- In each band the maximum number of electrons is equal to 2N. 

Number of States in the Band

Applying the periodic boundary condition 
on this function shows that the allowed 
number of k is ;
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To obtain a specific values of E and , one needs to solve Schrodinger 
equation for the actual potential V(r) in the solid of interest. But 
since this is a very tough task, it is preferable to solve Schrodinger 
equation using some simplified potentials. 

SOME APPROXIMATE MODELS

* In this simplest case the crystal potential is assumed to be exactly 
zero ;V(r)=0.
i.e. the electron is completely free. 
* For 1D; the state functions and energies are:

Empty-lattice model:
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where L =Na is the length a long x axis and the superscript 0 indicates 
that these solutions obtained at V(x)=0.

and
(6)

(5)
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According to eq. (6) the dispersion curve of electrons has the 
familiar parabolic shape 

The periodic-zone scheme

The extended-zone

scheme

The reduced-zone scheme
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In this model the crystal potential is assumed to be so weak ; i.e. 
the electron is nearly free.

This model can serve as a rough approximation to the valence 
bands in the simple metals such as: Na, K, Al, etc.

 On the basis of perturbation method one finds that the crystal 
potential will only affect the regions near the zone boundaries.  This 
effect is to smooth over the sharp corners, and hence, to create 
energy gaps at these regions with values of,

Nearly-free-electron model (NFE):
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* Physically, energy gaps can be explained according to 
Bragg reflection of electron waves in crystal:

ank /1. When Bragg condition                       is satisfied at the zone 
boundaries, a wave traveling to  the right is Bragg 
reflected to the left forming a standing wave. 

2. Two different standing waves (+) & (-) will be formed 
from the two traveling waves eikr & e-ikr .

3. Each of these standing wave will pile up electrons at two 
different directions for the same k, and this the origin of 
the energy gap.
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 In this model the crystal potential is assumed to be strong so that 
the electron is captured by ions for some intervals. During each 
interval the electron orbits around a single ion, i.e. its state function 
is that of an atomic orbital.
 This model can serve as a rough approximation to the narrow, 
inner bands in solids. 

tight-binding model (TB):
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 The fact that used to distinguish between these types of solids is:

A band which is completely full carries no electric 
current, even in the presence of an electric field.

 If the gap between the valance band and the band immediately above 
it is small, electrons may be thermally excited across the gap and the 
solid is called a semiconductor.
 At room temperature a substance behaves as a semiconductor if Eg is 
less than 2eV. In insulators   Eg ~ 7eV.

Metals, Insulators & Semiconductors

SemiconductorInsulatorMetal Semi-metal
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Let g(E) defines the electron density of states, i.e.

g(E) dE = number of electron states per unit volume 
in the energy range (E - E+dE ).

The corresponding energy contours in k-space are spheres 
surrounding the origin.

Electron Density of states

Dispersion relation is given by;

For regions near the zone center:

Volume of shell confined between E & E+dE is: 4k2dk

(7)
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Hence:

Taking into account the spin degeneracy leads to
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 The larger the energy the greater the radius, and hence the larger 
the number of states.
 The greater the mass the larger the number of states.

Note:

(8)
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Dispersion relation given by (7) is not valid.

 As a result the density of states will has a more complicated 
formula. The following Fig. shows  how g(E) will vary with E near 
the zone boundaries. 

For regions near the zone boundaries:

Insulator or  Semiconductor

Monovalent metal Divalent metal
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Recall: FS is the surface in k-space inside which all states are 
occupied by valence electrons.
The significance of this surface derives from the fact that only those 
electrons lying near it contribute to thermal and electrical processes.

THE FERMI SURFACE

We will determine the Fermi energy EF in the regions where the 
relation (7) is applicable.
From definition;
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using (8) & (9) we get;
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The Harrison construction:
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 Consider an electron in a state k, the velocity by which it moves 
through the crystal should be related to the energy of the state 
according to;

But since                    , then

Velocity of The Bloch Electron

v of a Bloch electron.

 for a free electron the velocity is given by
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v of a free electron.
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(10)

Constant velocity 
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Note:
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 Near the center of the zone , where (7) is valid, the relation 
(10) lead to; 

Which is of the same form as the relation for 
a free particle, except that m0 has been 
replaced by m*. 

 The velocity is proportional to the 
slope of the energy curve

Constant velocity 

zero velocity
(standing waves) 


